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Abstract— A quantum network distributes quantum entangle-
ments between remote nodes, and is key to many applications in
secure communication, quantum sensing and distributed quan-
tum computing. This paper explores the fundamental trade-off
between the throughput and the quality of entanglement distri-
bution in a multi-hop quantum repeater network. Compared to
existing work which aims to heuristically maximize the entan-
glement distribution rate (EDR) and/or entanglement fidelity,
our goal is to characterize the maximum achievable worst-case
fidelity, while satisfying a bound on the maximum achievable
expected EDR between an arbitrary pair of quantum nodes.
This characterization will provide fundamental bounds on the
achievable performance region of a quantum network, which can
assist with the design of quantum network topology, protocols
and applications. However, the task is highly non-trivial and
is NP-hard as we shall prove. Our main contribution is a
fully polynomial-time approximation scheme to approximate the
achievable worst-case fidelity subject to a strict expected EDR
bound, combining an optimal fidelity-agnostic EDR-maximizing
formulation and a worst-case isotropic noise model. The EDR
and fidelity guarantees can be implemented by a post-selection-
and-storage protocol with quantum memories. By developing
a discrete-time quantum network simulator, we conduct sim-
ulations to show the characterized performance region (the
approximate Pareto frontier) of a network, and demonstrate that
the designed protocol can achieve the performance region while
existing protocols exhibit a substantial gap.

Index Terms— Quantum network, entanglement routing,
entanglement fidelity, network optimization, approximation
algorithm.
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I. INTRODUCTION

AQUANTUM network enables efficient quantum commu-
nication [29]. The ability to transmit information between

remote nodes is key to many astonishing quantum applica-
tions, such as quantum secure communication [5], distributed
quantum computing [15], and quantum sensor network [61].

Though current systems are built in ideal conditions and on
a small-scale [17], [23], [42], [46], [58], research has explored
how such small-scaled networks could potentially be extended
to a fully-fledged, global-scale quantum internet to distribute
entangled quantum states between remote nodes across long
distances. Future applications would require a steady stream
of high-quality entanglements between arbitrary remote ends.

This paper considers a first-generation quantum net-
work built with quantum repeaters [39], which performs
entanglement distribution via entanglement generation and
entanglement swapping. If a quantum link connects a pair of
repeaters, one repeater can generate an entangled photon pair
and send one of the pair to the other repeater directly. Entan-
glements generated over multiple links can further be swapped
at joint intermediate nodes to entangle qubits at indirectly
connected nodes. This way, each end-to-end entanglement is
generated along an entanglement path in a quantum network.

As entanglements are a critical resource, attention has been
drawn to the efficient distribution protocol design to balance
the quantity (aka entanglement distribution rate or EDR) and
quality (aka fidelity) of entanglement distribution. A quantum
network has unique characteristics imposed by the underlying
physics or technology deficits. First, entanglement distribution
efficiency is fundamentally limited by transmission loss of
entangled photons and failures in swapping. To mitigate these,
existing works have studied efficient entanglement routing
to find paths with maximum success probability [18], [48],
[62]. Second, uncontrollable noise and operation errors can
degrade the quality of distributed entanglements. Low fidelity
results in low communication efficiency due to excessive error
correction needed, even when the EDR is high. Thus, it is
essential to consider both EDR and fidelity to support various
applications.

This paper explores the tradeoff between the achievable
EDR and the fidelity of a general quantum network. We start
with characterizing the end-to-end fidelity of entanglements
distributed over an entanglement path. We then propose a
novel decomposition theorem based on a new primitive entan-
glement flow abstraction that generalizes an entanglement
path by considering the order of swapping along a path,
which we show to be an exact abstraction for characterizing
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both the maximum achievable EDR and the end-to-end fidelity
at the same time. Next, we formulate the problem of comput-
ing the maximum achievable worst-case fidelity while trying
to satisfy a lower bound on the achievable expected EDR.
This bi-criteria formulation can be used to optimize for many
applications that desire a steady entanglement rate and can
benefit from improved end-to-end fidelity. Our solution, named
FENDI, is a fully polynomial-time approximation scheme to
the formulated bi-criteria problem. We further show that the
computed solution can be implemented with a post-selection-
and-storage protocol1 to achieve both the expected EDR and
the end-to-end fidelity. With the help of discrete event simula-
tion, we demonstrate that FENDI can be used to approximate
the EDR-fidelity Pareto frontier of a network efficiently and
show that existing algorithms exhibit a substantial gap from
the approximate frontier that can be achieved by the post-
selection-and-storage protocol. Our main contributions are
summarized as follows:

1) We model a general quantum network with Werner states
and derive an end-to-end fidelity parameter as a product
of link and node attributes based on isotropic noise.

2) We present a novel decomposition theorem that bridges
between the maximum achievable EDR and fidelity,
based on a new primitive entanglement flow (pflow)
abstraction.

3) Based on the above, we formulate a bi-criteria prob-
lem called high-fidelity remote entanglement distribution
(HF-RED) between a pair of nodes and prove it is
NP-hard.

4) We propose a fully polynomial-time approximation
scheme (FPTAS) to maximize the worst-case end-to-end
fidelity subject to a lower bound on the expected EDR.

5) We develop a discrete event quantum network simulator
implementing the protocol, characterize the (approx-
imate) EDR-fidelity frontier and compare existing
protocols to the post-selection-and-storage protocol.

Organization: §II reviews background and related work.
§III introduces the network model. §IV presents our decom-
position theorem for characterizing the EDR-fidelity trade-
off, formulating the HF-RED problem, and showing its
NP-hardness. §V presents our approximation scheme, analysis
and discussion. §VI presents simulation results. §VII con-
cludes the paper.

II. BACKGROUND AND RELATED WORK

The idea of a quantum network was first proposed by the
DARPA quantum network project [23]. Early work in quan-
tum networking focused on feasibility demonstration in ideal
situations. Much of the literature has derived analytical and
simulation models for quantum repeater chains [9], [25] and
other specialized topologies including lattices [41], star [52]
and ring-like topologies [11], [47]. In reality, a quantum
internet is unlikely to have such ideal topologies due to
physical and geographical limitations.

Recent studies have focused on entanglement routing in
general quantum networks [12], [33]. A common approach
was to find paths with the highest success probability using
modified shortest path algorithms [51]. Shi and Qian [48]
first showed that maximum-success paths do not lead to

1In a post-selection-and-storage protocol, the qubits can be stored in the
quantum memories of repeaters after being post-selected following successful
generation or swapping, and waiting for the next quantum operation.

the highest throughput and proposed QCAST and QPASS
with optimal single-path routing metrics. Zhaoand Qiao [62]
proposed an algorithm to achieve higher throughput by
provisioning redundant intermediate entanglements for swap-
ping. Zeng et al. [60] proposed an integer programming-based
solution using branch-and-price with very limited quantum
memories. Chen et al. [13], [14] proposed a decentralized
routing design for congestion avoidance through adaptive
evaluation of neighbor nodes. Dai et al. [18], [19] proposed
the first optimal remote entanglement distribution (ORED)
protocol for end-to-end EDR maximization, giving an upper
bound on the achievable expected EDR between a pair of
nodes. The above works only considered the quantity (EDR)
but ignored the quality (fidelity) of entanglements.

To enable high-quality quantum communication, some
works have focused on ensuring or improving fidelity [32],
[50]. Zhao et al. [64] derived an end-to-end fidelity model
based on bit flip errors and proposed a purification-based
fidelity-aware routing algorithm. Li et al. [34] further proposed
end-to-end fidelity-guaranteed entanglement routing design
to achieve high-performance and low-complexity routing.
Pouryousef et al. [44] proposed a quantum overlay network
architecture, utilizing entanglement purification to satisfy the
fidelity requirements of end-user applications.

Despite many recent efforts, we find that most entanglement
routing solutions are based on handcrafted heuristic algo-
rithms that only provide a lower bound on the achievable
EDR and/or a heuristic trade-off between EDR and fidelity.
Many papers assume quantum memories are limited and
ephemeral [48], [60], [64] and build their solutions directly
upon this assumption. However, this limitation is mostly
technological rather than fundamental, as demonstrated in
recent rapid advances in quantum memories [7], [8], [16], [21],
[45], and it remains unclear whether the above solutions will
achieve close-to-optimal EDR or EDR-fidelity trade-off when
memory technology matures. ORED [18] is the only protocol
that provides an upper bound on the achievable EDR in a
general quantum network, and the bound is shown to be tight
with perfect memories. However, ORED does not consider
fidelity. Hence, the resulting protocol may not be applicable
to fidelity-sensitive application scenarios. Overall, there is no
existing work that characterizes the fundamental EDR-fidelity
trade-off in a complex, general quantum network scenario,
which we aim to address in this paper.

III. SYSTEM MODEL

In this section, we present preliminaries of a quantum
network. Notations related to modeling are summarized in
Table I.

A. Quantum Basics
Consider a common 2-state quantum system with orthonor-

mal basis states |0⟩ and |1⟩. A quantum bit (qubit) is a
superposition of |0⟩ and |1⟩, written as |b⟩ = α|0⟩ + β|1⟩,
satisfying |α|2+|β|2 = 1. A perfect measurement on |b⟩ yields
classical state 0 with probability |α|2 and 1 with probability
|β|2. A two-qubit system is a superposition of four basis states
|00⟩, |01⟩, |10⟩ and |11⟩. Let |b1b2⟩= α00|00⟩ +α01|01⟩ +
α10|10⟩+α11|11⟩, such that |α00|2+|α01|2+|α10|2+|α11|2 =
1. A maximally entangled pair (Bell pair) is a two-qubit system
in one of the four Bell states: |Φ±⟩ = 1√

2
(|00⟩ ± |11⟩), and
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TABLE I
KEY NOTATIONS IN MODELING

|Ψ±⟩ = 1√
2
(|01⟩ ± |10⟩). A Bell pair is maximally entangled

since it only contains two of the four basic states with equal
probability, where in both states the two qubits are perfectly
correlated. Bell pairs (also called ebits) form the basis of
two-party quantum communications: if Alice and Bob each
holds one of two entangled qubits, they can use this pair to
send any single-qubit quantum state via local operations and
classical communication (LOCC). Bell pairs can also be used
to construct arbitrary multipartite entangled states needed by
applications such as distributed quantum sensing [55].

B. Quantum Operations
Entanglement generation: A quantum network mainly

relies on the generation and transmission of photonic entangled
states. A pair of entangled photons is first generated by a phys-
ical process such as spontaneous parametric down-conversion
(SPDC) at an entanglement source. Then, both photons are
transmitted to two nearby nodes via a quantum link2. The
photons can be transmitted via links such as optical fiber, free
space, or optical switch, but suffer from transmission loss that
is commonly exponential to the distance traversed [43], [49].
We consider generating an entangled photon pair and trans-
mitting one/both photons jointly as entanglement generation.
Entanglements generated via this process are elementary ebits.

Notably, this is a probabilistic process because of both
the generation process with non-linear optics and the prob-
abilistic transmission loss. A heralding and post-selection
process is commonly employed after this process to detect
successfully entangled and transmitted pairs, and the process
can be repeated many times until one entangled pair is
generated.

Entanglement swapping: Considering photon loss during
transmission, entanglement swapping via quantum repeaters is
essential for long-distance entanglement distribution. A swap
takes two remote entangled pairs as input—each with one
photon on a shared repeater. The repeater first entangles the
two local photons, performs Bell state measurement (BSM),
and then sends the result to either of the two remote nodes
via classical communication. The node receiving the result

2Alternatively, the entanglement source can be placed at a repeater, then
only one photon needs to traverse the link to the other repeater.

Fig. 1. Basic quantum network operations: entanglement generation and
entanglement swapping.

then performs a local unitary operation on its own qubit, and
the two remote photons become entangled without physical
interaction.

Similar to generation, swapping is also probabilistic with
near-term devices. Fundamentally, the success probability
of linear optics-based BSM cannot exceed 50% without
auxiliary photons, since two of the four Bell states are
not distinguishable [10], [28]. To boost the BSM suc-
cess probability, auxiliary single- or entangled-photon states
may be used, and success rates of 62.5% and 78.125%
have been demonstrated experimentally with single-photon
ancillae using single photon detectors and photon number
resolvers, respectively [3] and [24]. In principle, the suc-
cess probability of BSM can be boosted to be arbitrarily
close to 100% with an infinite number of ancillae and
photon detectors [26], but the requirement of simultane-
ously generating many indistinguishable single photons at
once (or storing them in quantum memories) significantly
limits the applicability of such schemes. Besides theoreti-
cal limits, device deficits may further degrade the success
probability.

Fig. 1 illustrates the process of entanglement distribution.
Two elementary ebits are first generated along links A–B
and B–C via entanglement generation. To swap, B entangles
and measures its two local qubits and sends the result to
either A or C via classical communications. According to
the result, A or C applies a unitary operation on its qubit.
If all operations succeed, the two qubits at A and C are then
entangled without interacting with each other. This can be
done recursively along a path until an end-to-end ebit between
source and destination3 is established for quantum information
exchange.

C. Quantum Network Model

Formally, we model a quantum internet with an undirected
graph G = (N,L), where N is the set of quantum repeaters,
and L is the set of physical channels (links) between repeaters.
Each link l ∈ L has a capacity cl ∈ Z+, denoting the number
of channels that can be attempted for ebit generation; Z+

denotes the positive integer set. To model the aforementioned
probabilistic processes, we assume each link l ∈ L has a
success probability ql for entanglement generation and each
repeater n ∈ N has a success probability qn for swapping.

To ease illustration and facilitate comparison to existing
work, we adopt a time-slotted system model following existing

3Although entanglements are undirected, we use traditional network terms
“source” and “destination” to denote an undirected pair of end nodes involved
in quantum communications for simplicity.
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work [62], [64] where each time slot consists of four phases
that are executed in a sequential order4.

1) Entanglement generation: For a pair of nodes mn ∈
L with a direct link, they will attempt to generate
elementary mn-ebits at a pre-defined rate.5

2) Entanglement swapping: When ebits are available
between both node pair mk and node pair kn sharing a
common repeater k, repeater k can attempt to perform
entanglement swapping between each pair of mk- and
kn-ebits to create ebits between remote nodes m and n.

We assume a central controller collects network infor-
mation, monitors network status, and allocates resources by
defining the rates of generation and the order of swapping.

D. Quantum Noise and Fidelity
While the above models assume perfect quantum channels

and operations—meaning the final distributed ebits are in
the exact same state as the generated ones—the inevitable
noise in quantum operation and transmission can introduce
error and make the final state differ from the initial state.
In classical communication, errors can be measured, detected,
and corrected on-the-fly or end-to-end. In quantum, however,
errors cannot be detected without destroying the quantum state
due to the no-cloning theorem. Thus when a pure entangled
state is affected by noise, it becomes a mixed state that cannot
be distinguished from the pure state without measurement.

Let |Φ+⟩ be our desired pure entangled state6. A mixed
state M can result from |Φ+⟩ through a noisy channel or
noise in quantum operations. Fidelity is a key quantum metric
quantifying how close a mixed state is to the desired state,
defined as F ≜ ⟨Φ+|M |Φ+⟩, and denoting the probability
that M (represented by a density matrix) is in the desired state
|Φ+⟩. To provide a rigorous fidelity guarantee, we assume a
worst-case isotropic error model [53], as compared to the bit
flip error model in [64]. As in [6], an arbitrary mixed state
M with fidelity F can be transformed to a Werner state with
the same F via random bilateral rotations (RBR) as

WF

=F |Φ+⟩⟨Φ+|+ 1−F
3

(|Φ−⟩⟨Φ−|+ |Ψ+⟩⟨Ψ+|+|Ψ−⟩⟨Ψ−|).

This Werner state can be viewed as a mixture of the pure state
|Φ+⟩ with isotropic noise [53]. We assume all elementary and
intermediate mixed-state ebits are transformed to the Werner
state before further operation.

For an elementary ebit generated along a physical channel
l, we define the fidelity as Fl ∈ [0, 1], which is decided by
the quantum circuit that generates the entanglements and the
channel noise during transmission.

Given two ebits with fidelity F1 and F2 respectively and
a perfect swapping performed between them, the presence

4The assumption on time slots is non-restrictive, as our design can be
extended to the continuous-time model with the help of quantum memories.
With even short-lived memories as temporary buffers, the four phases can be
executed in parallel in continuous time, each phase independently based on
(probabilistic) output from the other phases. With more advances in long-term
optical quantum memories [21], [45], we believe quantum repeaters built upon
continuous-time asynchronous operations will be more realistic in the near
future and provide better performance (such as EDR) [56], [63].

5We use mn to abbreviate an unordered node pair {m,n}. Hence
mn=nm.

6Since all Bell states are symmetric, we use |Φ+⟩ as the desired state
without loss of generality throughout this paper.

of noise in the ebits means that even a perfect swapping
might still fail due to the two ebits not being in the desired
state |Φ+⟩, leading to measurement error. Two cases may
result in a successful swap: 1) both ebits were in |Φ+⟩ with
probability F ∗ = F1F2, in which case the swapped ebit is
also in |Φ+⟩; 2) both ebits were not in |Φ+⟩ but had equal
states with probability F ∗∗ = 3 (1−F1)

3
(1−F2)

3 , in which case
the swapped ebit is in another Bell state instead of |Φ+⟩, but
can be transformed to |Φ+⟩ via LOCC [6]. In the other cases,
the swap fails because of unknown and unequal states of the
two ebits. By combining these cases, a perfect entanglement
swap will result in a new ebit with fidelity F ′ [22], where

F ′ = F ∗ + F ∗∗ =
1
4
·
(

1 + 3
(4F1 − 1)

3
(4F2 − 1)

3

)
. (1)

In practice, the swapping operation is also noisy or imper-
fect, and hence incurs additional fidelity loss. Such loss is due
to the (un)reliability of BSM, 1-qubit operation, and 2-qubit
operation involved. For instance, if a swap is performed with
two elementary ebits with F1 and F2 at node n where the
accuracy of BSM and probabilities of ideal 1-qubit, 2-qubit
operations are αn, o1,n, and o2,n, respectively, the fidelity of
a successfully generated ebit after swapping [22] is

F ′ =
1
4
·
(

1 + 3o1,no2,n
4α2

n − 1
3

4F1 − 1
3

4F2 − 1
3

)
. (2)

Based on Eq. (2), we facilitate notation by defining fidelity
parameters Wl ≜ 4Fl−1

3 and Wn ≜ o1,no2,n
4α2

n−1
3 for

each link l and repeater n respectively, and the fidelity of
a successfully generated ebit after swapping is

F ′ =
1
4
· (1 + 3W1W2Wn) . (3)

Assume an end-to-end ebit is established by swapping
elementary ebits created along links {l1, l2, . . . , lX+1} ⊆ L
recursively at nodes {n1, n2, . . . , nX}⊆N . Recursively apply-
ing Eq. (3), the end-to-end fidelity of the ebit is

F E2E =
1
4
·

1 + 3
X+1∏
i=1

Wli

X∏
j=1

Wnj

 . (4)

From Eq. (4), the end-to-end fidelity decreases exponentially
with increasing number of hops [31]. Eq. (4) will serve as the
basic tool to quantify and optimize the end-to-end fidelity.

Note that fidelity cannot be measured for a single ebit—
the measurement itself will destroy the ebit. As such, fidelity
parameters can only be inferred from measuring and profiling
ebits generated on elementary links (or after swap) for many
times. We assume that each node or link will be independently
profiling the Wn or Wl value continuously throughout the
network operations and will regard these values (or some
binary encoding of them) as input to further modeling and
formulation.

E. Performance Metrics and Problem Statement
We consider two important performance metrics in the end-

to-end entanglement distribution process, which has also been
widely adopted in the literature:

1) Entanglement distribution rate (EDR): Similar to
throughput in a classical network, EDR is the number of
ebits distributed between an SD pair in unit time. Due
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to the probabilistic operations, we use ηst to denote the
expected EDR between the source s and destination t.

2) End-to-end fidelity: A higher end-to-end fidelity F E2E

leads to higher communication efficiency.
For realistic applications, it is commonly required that both

metrics are high enough. For instance, in distributed quantum
computing, the EDR decides how long a data qubit needs to
wait for an ebit for teleportation, while the fidelity decides
the quality of the data qubit after teleportation. A general
quantum network needs to support applications with varying
needs in terms of EDR and fidelity. It is thus important
to (1) characterize the achievable EDR and fidelity between an
arbitrary SD pair in a general quantum network and (2) devise
arbitrary trade-offs between achievable EDR and fidelity.

While the first task has been somewhat tackled in existing
work, only heuristic solutions exist for the second task. The
difficulty lies in simultaneously optimizing for two metrics
while having theoretical guarantee on both. In the classical
network, such a problem is called quality-of-service (QoS)
routing [59]. Compared to the classical network, the difficulty
in quantum is that the path-based formulation—while enabling
clear modeling of end-to-end fidelity as in Eq. (4)—does not
lead to any optimality or approximation guarantee on the
achievable EDR, while the EDR-optimal formulation (ORED)
cannot encode end-to-end fidelity being linear program (LP)-
based. To tackle these challenges, we aim to achieve two goals:

1) Define a unifying mathematical abstraction that can
accurately characterize both the achievable EDR and
end-to-end fidelity between an SD pair in a quantum
network.

2) Design an algorithm to find an arbitrary (approximately)
optimal trade-off between achievable EDR and fidelity.

We address the first in Sec. IV, and the second in Sec. V.
Specifically, we provide a formal trade-off problem definition
in Sec. IV-C and computational complexity in Sec. IV-D.

IV. CHARACTERIZING ACHIEVABLE EDR AND FIDELITY

A. Characterizing Achievable Expected EDR
We start with the question of how to characterize the

maximum achievable EDR between two nodes in a given
network. Assuming no quantum memory is available, the
generated ebits would decohere within one time slot, meaning
that all generation and swapping processes along an end-
to-end path must succeed in unit time. The probability of
successful generation along one path is thus the product of
all node and link probabilities: P E2E

st =
∏X+1
i=1 qli

∏X
j=1 qnj

for a path ρ = (n0, n1, . . . , nX+1) where s = n0, t = nX+1

and li = ni−1ni ∈ L. The achievable expected EDR is then
the bottleneck capacity c∗st ≜ mini{cli} times the end-to-end
success probability: ηst = c∗st · P E2E

st .
It is expected that future quantum repeaters will be equipped

with quantum memories acting as temporary buffers. In this
case, rate characterization becomes more complicated. In [48],
it has been shown that post-selection and storage can increase
the maximum achievable EDR beyond the simple product
of probabilities times capacity, since the quantum memories
can temporarily buffer and rematch the post-selected ebits
that are unmatched for swapping due to unsuccessful ebit
generation on other links. Subsequently, many works have
explored how to design entanglement routing and distribution
protocols with limited or ephemeral quantum memories to

improve EDR [56], [62], [64]. However, the extent to which
post-selection and storage can increase the optimal expected
EDR remains unclear.

A recent breakthrough is a tight upper bound on the
maximum achievable EDR between a pair of nodes with
post-selection and storage as in [18], [19]. Their result is based
on an abstraction called the entanglement flow, or eflow, which
formulates the maximum achievable expected EDR as a linear
program. Below, we present the general definition of an eflow
in [19], which will be used in our decomposition theorem.

Definition 1 (Eflow [19]): Given a network G = (N,L)
and an SD pair st, an eflow in G is defined by variables
noitemsep,topsep=0pt
• gmn ∈ [0, 1],∀mn ∈ L, denoting the rate of elementary

ebit generation along the physical link mn, as a ratio of
the capacity cmn of the link, and

• fmkmn ≥ 0,∀m,n, k ∈ N , denoting the expected rate of
ebits established between nodes m and k that will be used
for swapping to generate ebits between nodes m and n.

A feasible eflow must have f and g satisfying:

fmkmn = fknmn, ∀m,n, k ∈ N ; (5a)
I(mn) = Ω(mn), ∀m,n∈N,mn ̸= st; (5b)
Ω(st) = 0; (5c)

where for ∀m,n ∈ N ,

I(mn) ≜ qmncmngmn ·1mn∈L+
∑

k∈N\{m,n}

qk
2

(
fmkmn+fknmn

)
,

(5d)

Ω(mn) ≜
∑

k∈N\{m,n}

(fmnmk + fmnkn ) , (5e)

and 1mn∈L is an indicator function of whether mn ∈ L. The
eflow value of SD pair st is defined as ηst ≜ I(st). □

Explanation: For brevity, each node pair mn with m,n ∈
N is called an enode, meaning that post-selected ebits may
be established between the pair of nodes at some stage of
remote distribution. Here I(mn) denotes the ebits generated
between mn (including elementary ebits and ebits generated
by swapping), and Ω(mn) denotes the ebits contributed by
mn to generate ebits between other node pairs via swapping.
Note that the elementary ebits (first term in Eq. (5d)) are
discounted by generation probability qmn, and ebits received
from swapping at node k are discounted by swapping proba-
bility qk. Eq. (5a) enforces the two pairs mk and kn, whose
ebits will be swapped to form ebits for mn, contribute equal
number of ebits. Eq. (5b) enforces an intermediate pair mn
does not keep generated ebits, but contributes all ebits for
establishing end-to-end ebits. Eq. (5c) constraints that the
SD pair st should not contribute any established ebits to
further swapping. An eflow describes how ebits “flow through”
different enodes and “merge” at repeaters until some are
“landed in” (established between) the SD pair st, with flow
conservation at repeaters as in (5b).

One way to visualize an eflow is to define its induced
graph, G = (V, E), where V ⊆ (N × N) ∪ {⊥} is a set
of enodes (with a special enode ⊥ denoting the generation
process), and E ⊆ V×V are directed edges denoting generation
and swapping processes. An enode mn ∈ V corresponds to
one with I(mn) > 0 in the eflow. An edge (mk,mn) ∈ E
then denotes one swapping variable fmkmn > 0. An edge
(⊥,mn) ∈ E specially denotes a generation variable gmn > 0.
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6 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 2. Induced graph of an eflow. Value on each edge denotes a variable:
gmn or fmk

mn . Two same-color edges pointing to one enode are matched for
swapping.

From Eq. (5a), it is clear that swapping edges (mk,mn) and
(kn,mn) must appear simultaneously in G—either they both
present or they both absent. An example is shown in Fig. 2.

We summarize the importance of the eflow formulation with
the following theorem, which restates Theorems 1–2 in [19].

Theorem 1 (Characterizing Maximum EDR [19]): The
optimal solution to the following problem (called ORED
in [19]),

η∗st≜maxf,g{ηst | (5a)–(5e)}, (6)

is a tight upper bound on the maximum expected EDR between
s and t in G. The induced graph G of at least one optimal
solution is a directed acyclic graph (DAG). Furthermore, there
exists an entanglement distribution protocol that can achieve
expected EDR of η∗st between st. □

The primary limitation with the eflow formulation is that it
cannot model ebit fidelity loss in generation and swapping.
Since ebits may arrive at an enode from any possible sequence
of swaps at arbitrary repeaters, there may be an exponential
number of possible paths in G from which an ebit might
have been generated, and some may result in low fidelity
that can render the distributed ebits unusable. In the next
subsection, we propose a novel abstraction, called primitive
eflow, to characterize the end-to-end fidelity of the distributed
ebits.

B. Eflow Decomposition & Characterizing End-to-End
Fidelity

To characterize the end-to-end fidelity, we adopt an abstrac-
tion, named primitive eflow (pflow), that naturally encodes
the fidelity of entanglement paths while still maintaining the
same tight upper bound on achievable EDR. This enables an
alternative formulation that is equivalent to Program (5), and is
similar to the path-flow formulation in classical network flow
as an alternative to the edge-flow formulation [2]. We establish
this equivalence with a novel eflow decomposition theorem.

Definition 2 (Pflow): A primitive eflow (pflow) is a feasible
eflow as defined by Program (5), which additionally satisfies
that: for every enode mn, either gmn > 0, or there exists
exactly one k∈N such that fmkmn =fknmn>0, but not both. □

A pflow is primitive in that ebits at each enode mn is
generated in exactly one way: either they are elementary ebits
generated directly along link mn ∈ L, or they are generated
by swapping mk- and kn-ebits at a single intermediary k. The
induced graph G of a pflow, excluding the special ⊥ vertex,
is always a binary tree rooted at enode st by the definition;
Fig. 2 shows two such binary trees with different colors.
A pflow naturally represents exactly one path in the quantum
internet, and the final st-ebits generated along a pflow have
identical fidelity, which can be directly computed via Eq. (4).

Algorithm 1 Computing Ebit Generation Ratios of a Pflow
Input: Induced graph G of an st-pflow
Output: Ebit generation ratios {ḡmn, f̄mkmn , f̄

kn
mn}

1 Initialize all ratios to 0, and Q← {(st, 1)};
2 while Q ̸= ∅ do
3 (mn,ψ)← Q.pop();
4 if ∄k such that (mk,mn) ∈ E then
5 ḡmn ← gmn + ψ/(qmn · cmn);
6 else
7 f̄mkmn ← f̄mkmn + ψ/qk, f̄knmn ← f̄knmn + ψ/qk;
8 Q.push((mk,ψ/qk)), Q.push((kn, ψ/qk));
9 return {ḡmn, f̄mkmn , f̄

kn
mn}.

Another property of a pflow is that the ratio between each
variable in {gmn, fmkmn |m, k, n ∈ N}, and the end-to-end
EDR ηst, is fixed. Let ḡmn or f̄mkmn be the ratio between the
corresponding variable and the EDR of the pflow. Given the
induced graph G of the pflow, these ratios can be computed as
in Algorithm 1, backtracking from enode st which has a ratio
of 1 (one generated ebit between st translates into one end-to-
end st-ebit). For each enode mn, its output ebit rate Ω(mn)
is added to its input ebit rate(s), i.e., either ḡmn or f̄mkmn and
f̄knmn for some k, augmented by the corresponding expected
ratios of 1/qmn or 1/qk respectively. Based on Algorithm 1,
a pflow can essentially be defined by its induced graph G, and
a single objective value ηG assigned to this pflow.

Crucially, the pflow abstraction leads to the following
theorem (with the proof delegated to Appendix A), which
generalizes the classical flow decomposition theorem [2] to
the quantum network setting:

Theorem 2 (Eflow Decomposition): An eflow with ηst >
0 can be decomposed into a polynomial number of pflows.
□

Theorem 2 enables an alternative pflow-based formulation
to Program (5) in Definition 1. Let Ψst be the set of all possible
pflows between s and t, and let η(ψ) ≥ 0 be the pflow value
assigned to ψ ∈ Ψst. Lemma 1 follows from Theorem 2:

Lemma 1 (Pflow-based EDR Characterization): The maxi-
mum expected EDR η∗st in Eq. (6) can be computed by
Program (7):

η∗st = maxη
∑

ψ∈Ψst

η(ψ)

s.t.
∑

ψ∈Ψst:mn∈ψ

ḡmn · η(ψ) ≤ 1, ∀mn ∈ L. (7)

Program (7) computes η∗st by assigning values to pflows in
Ψst, while making sure that no link mn ∈ L is oversubscribed
beyond a ratio of 1, i.e., being asked to generate more than
cmn ebits per unit time. Thus, the key observation is that each
actual ebit is still generated along a single entanglement path.
The fidelity of the ebit is precisely defined by the path along
which it is generated based on Eq. (4). Assume an eflow can
generate ebits all with fidelity no less than a given bound Υst.
Following Lemma 1, the eflow can always be decomposed
into a set of pflows, where each pflow generates ebits along
a fixed path with fidelity lower bounded by Υst (some of the
pflows may share the same path). This leads to Theorem 3.

Theorem 3 (Characterizing Worst-Case Fidelity): An eflow
that generates ebits with minimum end-to-end fidelity Υst can
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Fig. 3. The EDR-fidelity Pareto frontier of a simple network. Shaded area
denotes gap from a solution to the actual frontier.

be decomposed into a set of pflows, each along an st-path
whose fidelity is at least Υst. □

Remark: The importance of Theorem 3 is not to characterize
the maximum end-to-end fidelity for generating a single ebit.
Such maximum fidelity can be easily computed by employ-
ing Dijkstra’s algorithm and finding the highest-fidelity path
following Eq. (4). Instead, the goal is to characterize the worst-
case end-to-end fidelity for achieving an end-to-end EDR goal,
or vice versa, utilizing as many paths/pflows as possible.

C. Trade-off Between EDR and Worst-Case Fidelity
Consider a quantum application having two performance

requirements for remote entanglement distribution: 1) the
long-term average EDR is at least ∆st; 2) each generated
ebit has fidelity no less than Υst. Having a higher EDR goal
∆st means the network may need to utilize more paths for
distribution, some maybe leading to lower end-to-end fidelity
than others, which overall may lead to a lower Υst that can
be satisfied.

Consider an SD pair A and B in Fig. 3(a) which are con-
nected by three different quantum links, all with capacity 1 but
different fidelity. When the end-to-end fidelity requirement
increases, the achievable EDR will decrease as the number of
feasible paths/pflows becomes less, and vice versa, as shown
in Fig. 3(b). The trade-off can become more complicated when
swapping probability and fidelity loss are taken into account.

We start to explore this trade-off from the motivating
example, which is to simultaneously satisfy the expected EDR
and fidelity as shown in Fig. 3(b). Therefore, we define
the high-fidelity remote entanglement distribution (HF-RED)
problem.

Definition 3 (HF-RED): Given a quantum network G =
(N,L) and an SD pair st, let ∆st> 0 be the expected EDR
bound and Υst>0 be the end-to-end fidelity bound. The high-
fidelity remote entanglement distribution problem (denoted as
HF-RED) is to seek a set of pflow P∗st ⊆ Ψst, which delivers
end-to-end st-ebits satisfying that

1) total expected EDR ηst of all pflows is at least ∆st, and
2) each pflow has fidelity no less than Υst. □
Without loss of generality, we further define the opti-

mization version of HF-RED as OF-RED to maximize the
worst-case end-to-end fidelity subject to the expected EDR
bound.

Definition 4 (OF-RED): Let G = (N,L) be an undirected
graph with node set N and link set L. Let s be a source
node and t be a destination node. Let ∆st > 0 be an
expected entanglement distribution rate (EDR). The optimal-
fidelity remote entanglement distribution problem (denoted as
OF-RED) is to seek a set of pflow, which delivers end-to-end
(s, t)-ebits satisfying that

1) total expected EDR ηst of all pflows is at least ∆st, and
2) the minimum end-to-end fidelity of all pflows is maximized.

We note that OF-RED is an important problem for charac-
terizing the EDR-fidelity trade-off. Particularly, one can apply
the ϵ-constraint method in multi-objective optimization [37]
to find weak Pareto optimal solutions—solutions that can-
not be improved on one of the metrics without hurting the
other—by repetitively solving OF-RED with different bounds
on the expected EDR. In Sec. V, we utilize this method
depending on solving OF-RED efficiently to characterize the
EDR-fidelity trade-off curve, which, nevertheless, is highly
non-trivial.

D. Computational Complexity
Let Pst ⊆ Ψst be the set of st-pflows that are along paths

with fidelity no lower than Υst. HF-RED can be easily formu-
lated based on Program (7), by replacing Ψst with Pst in the
formulation—this constrains the program to only use pflows
satisfying the end-to-end fidelity constraint Υst when trying
to achieve the EDR goal ∆st. Notably, both Program (7) and
this fidelity-aware version are linear programs (LPs), but with
exponential sizes due to the potentially exponential number of
possible pflows in Ψst (or Pst). In fact, the following lemma
demonstrates the computational complexity of this problem:

Lemma 2: HF-RED and OF-RED are NP-hard. □
Proof: We prove NP-hardness of HF-RED by a reduction

from the Multi-Path routing with Bandwidth and Delay con-
straints (MPBD) problem, which is NP-complete [38]. Given
a graph, an SD pair and two values B,D > 0, MPBD asks
for a set of paths with delay upper bounded by D, and a
network flow over these paths with total flow lower bounded
by B. Given an MPBD instance, let us build an instance
of HF-RED. First, we set all probabilities ql and qn to 1.
Then we set Wl = e−dl where dl > 0 is the delay of
link l, and Wn = 1 for n ∈ N . Note that since dl > 0,
Wl ∈ (0, 1). The fidelity bound is Υst = (1 + 3 · e−D)/4.
Capacity cl is set as the bandwidth in MPBD, and EDR
bound ∆st = B. Given this construction, any generated ebit
represents a path p such that

∏
l∈pWl = e−

∑
l dl ≥ e−D,

which gives
∑
l dl ≤ D. Meanwhile, for any delay-feasible

path in MPBD, generating end-to-end ebits along this path
will satisfy the fidelity bound Υst. Since generation and
swapping both have success probability 1, the EDR is exactly
equal to the end-to-end st-flow value. Hence a solution to
MPBD gives a feasible solution to HF-RED, and vice versa.
HF-RED is thus NP-hard, and the NP-hardness of OF-RED
follows. □

Remark (from fidelity to length): We utilize the above proof
to transform end-to-end fidelity in Eq. (4) into an additive met-
ric. Define length values ζl = − log(Wl) and ζn = − log(Wn)
for link and node fidelity values, respectively. Consider end-
to-end fidelity F E2E of a path in Eq. (4). Define the path length
as Z =

∑X+1
i=1 ζli

∑X
j=1 ζnj

, then F E2E = 1
4 ·

(
1 + 3 e−Z

)
.

Since the above transformation is bijective, maximizing the
worst-case fidelity is equivalent to minimizing the longest path
length. Given a fidelity bound Υst, it is also easy to define an
equivalent length bound Zst = − log

(
4Υst−1

3

)
, such that any

path with length upper bounded by Zst will have fidelity lower
bounded by Υst, and vice versa. Note that using either Wl,Wn

or ζl, ζn only differs in the binary encoding to represent the
fidelity parameters. Because of the equivalence, we next focus
on minimizing the maximum path length in OF-RED.
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TABLE II
KEY NOTATIONS FOR ALGORITHM DESIGN

V. FPTAS FOR OPTIMIZING FIDELITY UNDER EDR
BOUND

The OF-RED problem aims to search for the highest
worst-case fidelity υ∗st (equivalently the minimum longest
path length Z∗st) under minimum end-to-end EDR requirement
∆st as in Fig. 3. The problem being NP-hard means no
polynomial-time algorithm can solve the problem optimally
unless P=NP. In this case, we propose a fully polynomial-time
approximation scheme (FPTAS), which is theoretically the
best polynomial-time algorithm one can hope for in this
circumstance.

Definition 5 (FPTAS [59]): Given a minimization problem
Λ, an algorithm A is a fully-polynomial approximation scheme
(FPTAS) for Λ, iff for any instance of Λ with optimal
objective value ξ∗ and given an arbitrary constant factor a,
the algorithm A could always find a feasible solution with
objective value ξ ≥ (1 + ε) · ξ∗, within time polynomial to
input size and 1/ε.

An FPTAS can achieve accuracy arbitrarily close to
the optimal solution while incurring only a polynomial
growth on time complexity over the accuracy parameter
1/ε. In other words, it provides full flexibility to the
accuracy-complexity trade-off, with each constant ε defining
a polynomial-time constant-factor approximation algorithm.
Our goal in this section is to design an FPTAS for the OF-
RED problem, which can be used as a tool to characterize
the approximate weak Pareto frontier of the EDR-fidelity
trade-off. Our algorithm is designed as a non-trivial exten-
sion to existing QoS routing algorithms [27], [30], [59],
with fundamentally different abstractions for routing paths
(pflows) and end-to-end evaluation of the entanglement
metrics.

Solution Overview: Our FPTAS includes four building
blocks. Notations related to algorithms are summarized in
Table II.

First, we design a pseudo-polynomial-time Fidelity-aware
Optimal Remote Entanglement Distribution (FORED) program
as an extension to Program (5). Under the restrictive condition
that all length values are integers, the program outputs an
eflow achieving maximum EDR with lower-bounded length
(fidelity).

Our second building block, an approximate testing
algorithm, uses the FORED program as a sub-routine to test
if a specific real-valued length can be achieved with the EDR
bound, subject to a small and bounded testing error.

Our third building block is a polynomial-time sorting and
trimming algorithm, which finds a pair of close-enough lower

Fig. 4. The overall algorithmic framework of FENDI.

and upper bounds for the optimal length value, to serve as the
initial range in which the optimal value will be searched for.

Finally, a two-stage bisection search algorithm iteratively
narrows down the initial range via approximate testing until
a solution is found within a small approximation error of the
optimal length (fidelity) value while satisfying the EDR bound.

The overall algorithmic framework, named FENDI,
is shown in Fig. 4. Given an approximation parameter ε > 0,
our FPTAS can obtain a (1+ ε)-approximation to the optimal
longest path length in time polynomial to the network graph
size |N | and 1/ε. Next, we design these building blocks one
by one.

A. Fidelity-Aware Optimal Remote Entanglement Distribution

Summary: Our first building block aims to extend Pro-
gram (5) into a new LP that maximizes expected EDR subject
to an (integer) bound on the path lengths. Note that the
objective (EDR) and constraint (fidelity) in this building block
are reversed from the OF-RED definition, which is a necessary
construction needed in later building blocks when searching
for the approximately optimal length (fidelity).

Consider a given path length bound Z, and assume all the
length values ζl and ζn are positive integers. In this case,
we assume the path length bound is also a positive integer
without loss of generality, which we instead denote as Z to
differentiate from a general, possibly non-integral path length
Z. We wish to find an eflow that maximizes the expected
EDR, subject to the constraint that every pflow has its length
bounded by Z.

Length-bounded eflow. The key to solving this “integral”
problem optimally is to build the integer length values into
the structure of the induced graph G of an eflow. Let [Z] =
{0, 1, 2, . . . , Z}. Consider two enodes mk and kn, whose ebits
might be swapped to generate ebits between mn. Depending
on how the mk- and kn-ebits are generated, we can divide
the two enodes each into Z + 1 copies, which we denote as
extended enodes mk/z and kn/z, for z ∈ [Z]. Each enode
mk/z denotes mk-ebits that are generated along a path with
path length of exactly z. Because of the integer length bound
Z, there are up to Z+1 different path length values (or equiv.
Z + 1 fidelity values) for ebits generated between each enode
mn. When two enodes mk/z1 and kn/z2 swap, if the resulting
length z1 + z2 + ζk > Z, the resulting ebits will not satisfy
the length/fidelity bound, and hence should be discarded. For
elementary ebit generation, the initial enode is mn/ζmn if
ζmn ≤ Z, reflecting the initial fidelity of the elementary ebits
on link mn ∈ L.

Assume we have a three-node network shown in Fig. 5(a),
and the goal is to establish AC-ebits either directly or through
repeater B. Length values are marked beside nodes/links.
Given a length bound Z = 6, direct generation along link
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Fig. 5. Example of a length-bounded eflow in a 3-node network in (a).
AC is the SD pair. Length values ζl are marked beside links. Given a length
bound Z = 6, there is one length-bounded eflow in (b). The eflow can be
visualized in a (Z + 1)-layered graph with all possible g and f variables as
edges in (c).

AC would not be feasible with ζAC = 8, and hence there is
no extended enode AC/8 in Fig. 5(c). Meanwhile, the feasible
eflow of swapping AB and BC to generate AC is visualized in
Fig. 5(b)–(c), with the edges from extended enodes AB/2 and
BC/1 to AC/4 given ζAB + ζBC + ζB = 2 + 1 + 1 = 4.

FORED formulation. We extend ORED to FORED, whose
solution (if feasible) is a length-bounded eflow achieving
maximum expected EDR. We keep variables gmn unchanged
for mn ∈ L. For each fmkmn , we extend it to up to O(Z2)
copies, denoted by f

mk/z′

mn/z , for z′ = [Z − ζk], and z =

z′+ζk, . . . , Z. In plain words, fmk/z
′

mn/z denotes the number of
mk-ebits, with a path segment length of z′, which contribute to
swapping at node k to generate mn-ebits with a path segment
length of z. We then formulate FORED in Program (8):

max
f,g

ηZst ≜
∑Z

z=0
I(st/z) (8)

s.t. fmk/z1mn/z = f
kn/z2
mn/z , ∀m,n, k ∈ N,

∀z1, z2∈ [Z−ζk], z=z1+z2+ζk; (8a)
I(mn/z) = Ω(mn/z),
∀z ∈ [Z], ∀m,n∈N,mn ̸=st; (8b)
I(st/z) = 0, ∀z; (8c)

where for ∀m,n ∈ N , z ∈ [Z],

I(mn/z) ≜ qmncmngmn · 1mn∈L,ζmn=z

+
∑
k∈N

\{m,n}

z−ζk∑
z′=0

qk
2

(
f
mk/z′

mn/z + f
kn/(z−z′−ζk)
mn/z

)
,

(8d)

Ω(mn/z) ≜
∑
k∈N

\{m,n}

 Z∑
z′=z+ζn

f
mn/z
mk/z′+

Z∑
z′=z+ζm

f
mn/z
kn/z′

 ,

(8e)

and 1mn∈L,ζmn=z denotes whether both mn ∈ L and
ζmn = z.

Explanation: Objective (8) is to maximize the sum of
end-to-end ebits generated over all paths of lengths up to

Algorithm 2 Approximate Testing Procedure
TEST(Z, ε)
Input: Network G, accuracy ε, non-quantized length

bound Z
Output: Test result ς ∈ {true, false}

1 θ ← (2|N | − 3)/(εZ), and Z ← ⌊θZ⌋+ (2|N | − 3);
2 Solve Program (8) with {ζθi } and Z, and get ηZst;
3 return ((Program (8) is feasible) AND (ηZst ≥ ∆st)).

the bound Z, represented by enodes st/z for z ∈ [Z].
Constraint (8a) considers the joint contribution to mn-ebits
with a specific path length z, from a pair of mk- and kn-
ebits with total path length z − ζk. This accounts for the fact
that a concatenated mn-path has a total length of the mk-
segment and the kn-segment, plus the length ζk of node k.
Constraint (8b) specifies flow conservation at each interme-
diate pair of nodes mn with each specific path length value
z. Constraint (8d) is the definition of I(mn/z) that includes
all generated ebits between mn with a specific length z from
either elementary ebit generation or intermediate swapping,
minus all ebits contributed to further swapping. Constraint (8e)
defines Ω(mn/z) that includes all the ebits between mn with a
specific length z, which will be swapped to build ebits between
other node pairs. Proof of the following theorem is delegated
to Appendix B.

Theorem 4: Given integer link/node lengths ζi > 0 for i ∈
N ∪L, and an integer length bound Z, Program (8) computes
the maximum expected EDR between s and t, with all ebits
generated along paths satisfying the length bound Z. □

Proposition 1: Program (8) can be solved optimally, in time
polynomial to the input size and Z. □

Proof: Program (8) is an LP with O(|N |3Z2) variables,
and can be solved in time polynomial to |N | and Z [57]. □

B. Approximate Testing Procedure
Summary: Our second building block aims to test if a (real-

valued) length bound Z admits a feasible solution that has an
expected EDR higher than the EDR goal in OF-RED, with
a bounded testing error. This is achieved by first quantizing
the original (real-valued) lengths into integers with a carefully
designed quantization factor, and then calling Program (8) to
derive the optimal EDR and compare it to the EDR goal.

Program (8) runs in pseudo-polynomial time and can be
used to check, given any length bound Z, if there is a
feasible length-bounded eflow with expected EDR bound ∆st.
This testing is limited by 1) the requirement in Program (8)
that all length values must be positive integers and 2) the
pseudo-polynomial running time. We design an approximate
testing procedure that simultaneously addresses these two
issues. Specifically, by designing a proper quantization scheme
to transform any real length value into a positive integer within
a polynomial scale, we can limit the size of the resulting
LP in Program (8), and bound the quantization error of the
transformation.

To start, we define a quantization of the length values
Z ≜ {ζi | i ∈ L ∪ N} with a factor θ > 0, where the
quantized length is denoted by ζθi =⌊θ ·ζi⌋+1, for i ∈ N ∪L.
This transformation ensures that the resulting value ζi is
always a positive integer, which satisfies the requirement of
Program (8).
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Let ζθ(p) be the length of an arbitrary path p in G
with quantization factor θ. We have the following lemmas
whose proofs can be found in Appendix C and Appendix D,
respectively:

Lemma 3: θ · ζ(p) ≤ ζθ(p) ≤ ⌊θ · ζ(p)⌋+ (2|N | − 3). □
Based on Lemma 3, we design the approximate testing

procedure in Algorithm 2. Given an accuracy parameter ε >
0 and a non-quantized length bound Z, and define quantization
factor θ and corresponding quantized length bound Z in
Line 1, the algorithm returns a test result ς ∈ {true, false},
which indicates whether the network admits a feasible length-
bounded eflow with expected EDR no lower than ∆st. Let Z∗
be the non-quantized length of the optimal solution of OF-
RED. Lemma 4 shows a numerical relationship between the
input length bound Z and the optimal Z∗ given the testing
outcome:

Lemma 4: Given any ε > 0 and Z > 0, we have

TEST(Z, ε) = true ⇒ Z∗ ≤ (1 + ε) · Z;
TEST(Z, ε) = false ⇒ Z∗ > Z.

□
Remark: The choice of the factor θ in Line 1 ensures both a

polynomial size and bounded quantization error. On one hand,
it ensures the quantized length bound Z is polynomial to |N |/ε
regardless of the value of the original length bound Z. On the
other hand, utilizing the maximum path length in the network,
it ensures that the testing result has an error of at most (1+ε).

The testing procedure is designed to enable a bisection
search for the minimum longest path length Z∗, if a reasonable
initial range [LB,UB] of Z∗ is given. By repeatedly testing if
a length bound Z ∈ [LB,UB] is feasible or not, the search can
multiplicatively reduce the search space, and return a close-
to-optimal feasible length bound Z within time logarithmic
to the size of the initial search space. Since the time com-
plexity of the search depends on the size of the search space,
we next seek to find a pair of lower bound LB and upper
bound UB on the optimal Z∗ that are reasonably close to
each other.

C. Sorting and Trimming Algorithm
Summary: By utilizing the approximate testing in Sec. V-B,

we wish to search a range of possible length bounds and test
each bound with approximate testing to find an approximately
optimal length that can satisfy the EDR goal of OF-RED.
However, before doing that, we need first to find a suitable
(polynomially bounded) range of length values, defined by a
lower and an upper bound, within which the optimal length
resides. We do this by a sorting and trimming algorithm below.

We design a sorting and trimming algorithm in Algorithm 3
to find an initial pair of bounds LB,UB on Z∗, such that
LB ≤ Z∗ ≤ UB. Algorithm 3 sorts all node/link lengths in
descending order and then iteratively finds a critical length
ζ[i−1] such that G[i−1] still admits a feasible solution to
Program (5) with while G[i] does not. Here, G[i−1] includes
all links and nodes with lengths up to ζ[i−1] and Program (5)
becomes infeasible or η[i−1]

st < ∆st when testing ζ[i]. If either
condition is met, Algorithm 3 stops and returns LB to ζ[i−1],
which is the last feasible solution length. For UB, considering
G[i−1] with N nodes, the maximum path length would be
(2|N |−3) with at most |N |−1 links and |N |−2 intermediate
nodes, Therefore, UB can be (2|N |−3) ·ζ[i−1] for the feasible
solution in G[i−1].

Algorithm 3 Finding Lower and Upper Bounds on Z∗

Input: Network G
Output: Lower and upper bounds (LB,UB) on Z∗

1 Sort node/link lengths in {ζl | l ∈ L} ∪ {ζn |n ∈ N} in
descending order as Z = (ζ[1], ζ[2], . . . );

2 for ζ[i] ∈ Z in sorted order do
3 Construct graph G[i] by pruning all nodes and

links with lengths greater than ζ[i] in G;
4 Solve Program (5) on G[i] for η[i]

st ;
5 if Infeasible or η[i]

st < ∆st then break;
6 return (LB = ζ[i−1],UB = (2|N | − 3)ζ[i−1]).

The following lemma states the gap between the so-found
LB and UB, whose proof is delegated to Appendix E.

Lemma 5: Algorithm 3 finds LB and UB such that LB ≤
Z∗ ≤ UB, and UB/LB ∈ O(|N |).

D. Two-Stage Bisection Search Algorithm
Summary: With the three building blocks designed above,

the last building block carries out an efficient bisection search
on the range [LB, UB] that contains the optimal length
value and finds an approximately optimal length bound that
can satisfy the EDR goal in OF-RED. This search must be
designed carefully, as below, to ensure a polynomial time
complexity.

After finding LB and UB with Algorithm 3, we can apply a
bisection search on the range [LB,UB] to find an approximator
of Z∗. Each time we define a bound Z=(LB + UB)/2, and
call TEST(Z, ε). If TEST(Z, ε) outputs true, we narrow the
gap by setting UB← (1 + ε)Z; otherwise, we set LB← Z.
To achieve the desired accuracy, it takes at least O(log(UB−
LB)) = O(log(|N |ζ[i−1])) search iterations (where ζ[i−1] is
the critical length in Algorithm 3), each making a call to
TEST(Z, ε) which solves an LP of size O(|N |3(|N |/ε)2).

In Algorithm 4, we propose an improved 2-stage search
algorithm, which reduces the asymptotic search complexity
and sizes of the LPs solved in most search iterations. In Stage-
1 (Lines 2–5), a multiplicative bisection (bisection in the
logarithmic scale) is done on [LB,UB], where each time
an ε = 1 is used in approximate testing. By Lemma 4,
TEST(Z, 1) returning false means Z∗ > Z and hence LB
is increased to Z; TEST(Z, 1) returning true means Z∗ ≤
(1 + ε) · Z = 2Z and hence UB is decreased to 2Z. Stage-1
ends when LB and UB are within a constant factor of each
other, such as UB/LB ≤ 4.

In Stage-2, instead of doing bisection directly on [LB,UB],
we do a bisection on the quantized bounds [ZLB, ZUB]. We fix
the quantization factor θ = (2|N | − 3)/(εLB), and only vary
the quantized path length bound Z. The main purpose of this
construction is to utilize quantization to naturally reduce the
number of search iterations to achieve the desired accuracy
defined by ε. Since LB and UB are within a constant ratio of
each other, the quantized length bound ZUB ∈ O(|N |/ε), and
hence O(log(|N |/ε)) search iterations are needed to search
all integers between ZLB and ZUB. This makes the search
complexity no longer related to the critical length ζ[i−1] as
in the naive bisection search. Let Zθ be the minimum longest
path length for quantized OF-RED (QOF-RED) with θ.

Theorem 5 states our main result with proof in Appendix F.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on December 16,2024 at 22:08:33 UTC from IEEE Xplore.  Restrictions apply. 



GU et al.: FENDI: TOWARD HIGH-FIDELITY ENTANGLEMENT DISTRIBUTION IN THE QUANTUM INTERNET 11

Algorithm 4 2-Stage Bisection for Approximate OF-RED
Input: Network G, search accuracy parameter ε
Output: Eflow with maximum path length Z+

1 Call Algorithm 3 to find LB and UB on Z∗;
2 while UB > 4 · LB do // Stage-1
3 Z =

√
(UB · LB)/2;

4 if TEST(Z, 1) = false then LB← Z;
5 else UB← 2 · Z;
6 θ← 2|N |−3

εLB , ZLB←⌊θLB⌋, ZUB←⌊θUB⌋+(2|N |−3);
7 while ZUB > ZLB + 1 do // Stage-2
8 Z ← ⌊(ZLB + ZUB)/2⌋;
9 Solve Program (8) with θ and Z, and get ηZst;

10 if Program (8) is feasible AND ηZst ≥ ∆st then
ZUB ← Z;

11 else ZLB ← Z;
12 return last feasible solution with max path length Z+

Theorem 5: Given accuracy parameter ε, Algorithm 4 finds
a (1 + ε)-approximation of the optimal OF-RED path length
value Z∗, within time polynomial to |N | and 1/ε. □

E. Discussions
Reducing running time: Despite being polynomial-time,

Algorithm 4 still has high complexity due to solving the
large-size LPs. There are several methods to reduce running
time: 1) setting a loose ε; 2) applying heuristic quantization
that works empirically; 3) developing heuristic algorithms to
solve the quantized LP. We will examine effect of the first
method in our evaluation. Considering that a quantum network
is designed for long-term operations, the overhead of offline
optimization can often be negligible. For instance, by spending
minutes or hours to compute a high-EDR and high-fidelity
entanglement distribution plan for a quantum key distribu-
tion (QKD) application [42], the plan could be executed
and deliver largely improved performance over a period of
weeks or months before offline maintenance/re-optimization is
needed.

Entanglement distribution protocol: While the goal of our
algorithm is mainly to 1) compute theoretical upper bounds on
the achievable EDR and worst-case fidelity and 2) characterize
the EDR-fidelity trade-off, we note that the computed eflow
can be implemented by a data plane protocol in Appendix G.
To achieve the theoretical EDR and fidelity, quantum memo-
ries are required to perform post-selection and storage before
further swapping. In evaluation, we will use this protocol to
characterize the EDR-fidelity trade-off in a simulated quantum
network, and evaluate the performance of several state-of-the-
art protocols with respect to the characterized trade-off.

Entanglement purification and error correction: This
paper regards purification or quantum error correction (QEC)
as an independent process from the entanglement distribu-
tion process. Both purification and QEC require consuming
multiple/many additional ebits or qubits in order to get one
high-quality ebit. This may significantly reduce the achievable
EDR. For example, assume we have a stream of entanglements
with EDR η. After one rounding of entanglement purification
with success probability qp [20], [40], the EDR will immedi-
ately drop to η

2 ·qp. More purification rounds degrade the EDR
exponentially, and QEC is generally even more costly than

Fig. 6. The trade-off between worst-case fidelity and expected EDR for
compared algorithms.

purification. Both operations also require idealized quantum
memories not only for storage but also for local quantum
computation, which are far more complicated to design and
implement. With the abstractions developed in this paper,
we wish to explore incorporating purification and QEC into
end-to-end modeling in our future work.

VI. PERFORMANCE EVALUATION

A. Evaluation Methodology

We developed a discrete-time quantum network simulator
and carried out simulations on randomly generated topologies.
We used random Waxman graphs [54] with parameters α =
β = 0.8. Each node or link had a success probability of
0.5 and 0.9, respectively, and fidelity was uniformly sampled
from [0.7, 0.95]. Each link had a capacity uniformly sampled
from [26, 35]. Parameters follow [64], except for the swapping
success probability due to the limitation of the current BSM
scheme with linear optics [3]. In each setting, we generated
5 graphs each with 15 nodes and 3 random SD pairs, except
in Fig. 6 where we characterized the entire trade-off curve
for one SD pair in a single graph. Results were averaged
over all runs in the same setting to average out random
noise.

Our time-slotted simulator is compatible with existing algo-
rithms, though our data plane protocol (see Appendix G) does
not require network-wide synchronization. Linear programs
were solved by Gurobi [1]. Simulations were run on a Linux
desktop with a 12-core 4GHz CPU and 256GB memory.
In each simulation, we simulated entanglement generation,
swapping and/or queuing for 1000 time slots based on the solu-
tion of algorithms. The following algorithms were compared:
• FENDI: Our FPTAS, with the solution executed with the

post-selection-and-storage protocol in Appendix G.
• ORED: The fidelity-agnostic ORED algorithm, with a

similar post-selection-and-storage protocol in [18].
• E2E-F: End-to-end fidelity-aware entanglement routing

in [64], without purification for fair comparison.
• QPASS: Fidelity-agnostic entanglement routing in [48].

We set ε = 0.5 by default and the number of paths as
30 for QPASS and E2E-F. Since E2E-F and QPASS are
entanglement routing algorithms for a bufferless quantum
network, we adapted our simulator to discard all saved ebits
in each slot.

The minimum fidelity and average fidelity measure the
lowest and average fidelity values of all end-to-end entangle-
ments. The EDR satisfaction ratio measures the fraction of
simulation runs where the EDR bound is met. The running
time measures the average time spent on running each control
plane algorithm.
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Fig. 7. Comparison between FENDI and state-of-the-art algorithms.

Fig. 8. Performance and running time of FENDI with varying ε and number of nodes.

B. Evaluation Results

1) Characterizing EDR-Fidelity Trade-off for Single SD
Pair: We first investigate how FENDI can be used to charac-
terize the EDR-fidelity trade-off curve for a single SD pair in
a randomly generated 15-node graph, and the result is shown
in Fig. 6. We applied the ϵ-constraint method [36], varying
the expected EDR bound from 1 until the maximum value
computed by ORED, and observed the maximum achievable
worst-case fidelity given each expected EDR bound. A few key
observations can be made: (i) Even in a 15-node network, there
could be many (more than 20) paths between a pair of nodes,
leading to many strongly Pareto optimal points in the frontier.
(ii) FENDI was able to (approximately) characterize the entire
frontier from one direction, presenting many different trade-off
options for entanglement distribution—each could be imple-
mented by the post-selection-and-storage protocol. (iii) None
of the existing algorithms could characterize the trade-off well.
Specifically, ORED could achieve the highest expected EDR,
but the lowest fidelity due to using all possible paths in the
network to maximize EDR. QPASS sought to maximize EDR,
but could achieve neither the maximum EDR nor the highest
fidelity. Both these methods are fidelity-agnostic, and hence
could only optimize for one dimension but not the trade-
off. The fidelity-aware E2E-F was able to trade-off EDR with
fidelity, but only for a very small portion of the entire trade-off
curve. The inefficacy comes from two aspects: 1) not being
able to utilize all paths to achieve an arbitrary trade-off, and 2)
not being able to provide guarantee for expected EDR. In fact,
most (if not all) existing algorithms are designed to optimize
for a single point in the area bounded by FENDI’s trade-off
curve, and mostly achieve a suboptimal point strictly within
the boundary.

2) Achievable Fidelity Versus EDR: Fig. 7(a)–(b) shows
the end-to-end worst-case and average fidelity with differ-
ent expected EDRs in randomly generated networks. From
Figs. 7(a)–(b), FENDI achieved the highest fidelity com-
pared to all other algorithms. For any specific expected EDR
bound, the two fidelity-aware algorithms (FENDI and E2E-F)
achieved significantly higher fidelity than the fidelity-agnostic

ones (ORED and QPASS), demonstrating the crucial need
for fidelity awareness in quantum networking. With increas-
ing EDR bounds, fidelity was sacrificed to meet the EDR
requirement when lower-fidelity paths were utilized. Though
both aimed to approach the optimal fidelity-EDR trade-off, the
fidelity gap between FENDI and E2E-F generally increased
with higher EDR bounds, demonstrating importance of our
approximation guarantee. Note that for many tasks such as
entanglement purification [4], entanglements are regarded as
non-usable when fidelity drops below 0.5. Fig. 7(a) shows
that to ensure minimum fidelity over 0.5, our algorithm could
achieve significantly higher expected EDR, even compared to
existing fidelity-aware algorithm such as E2E-F.

3) Capability to Satisfy EDR Requirement: From Fig. 7(c),
FENDI achieved EDR satisfaction ratios on par with ORED.
This is because both algorithms explore the same EDR feasi-
bility region, and differ only by fidelity of paths (pflows) to
meet a given expected EDR bound. Both FENDI and ORED
achieved higher EDR satisfaction ratio than QPASS and E2E-
F, even though E2E-F achieved similar (but still lower) fidelity
compared to FENDI and higher fidelity than ORED. There
are two reasons: 1) FENDI and ORED are optimal in terms
of whether an expected EDR bound can be satisfied while
E2E-F and QPASS have no such guarantee; 2) a buffered
network can achieve higher long-term EDR than a bufferless
network by storing instead of discarding unused intermediate
ebits.

4) Performance Versus Running Time of FPTAS: Fig. 8
shows the trade-off between performance and running time for
FENDI, with varying number of nodes and accuracy parameter
ε. Note that despite ε, FENDI always achieved the same EDR
satisfaction ratio as the same feasibility region of the problem
was explored, and thus we omit the figure showing the EDR
satisfaction ratio. From Fig. 8(a), the running time increased
with number of nodes and decreased with ε. From Figs. 8(b)
and 8(c), increasing ε led to fidelity reduction, matching our
theoretical analysis. However, with a relatively loose ε, such as
when ε=1, the achieved fidelity was on par with when ε was
set to a tight value such as 0.5. This shows that the theoretical

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on December 16,2024 at 22:08:33 UTC from IEEE Xplore.  Restrictions apply. 



GU et al.: FENDI: TOWARD HIGH-FIDELITY ENTANGLEMENT DISTRIBUTION IN THE QUANTUM INTERNET 13

guarantee tends to be over-conservative in practice, and it is
reasonable to set a loose ε to achieve high time efficiency with
reasonable performance. The correlation between number of
nodes and fidelity values of FENDI was weak. This could be
because, on the one hand, a larger graph with more nodes
could lead to more paths between each SD pair and hence
increase fidelity; on the other hand, a larger graph also means
it was more likely that two randomly picked nodes were further
away in the graph, leading to degraded fidelity over long paths.

VII. CONCLUSION

In this paper, we studied how to characterize the
entanglement distribution rate and fidelity trade-off in a
general-topology quantum network with theoretical guarantee.
We derived an end-to-end fidelity model with worst-case
(isotropic) noise. We then formulated the HF-RED problem
for maximizing the achievable fidelity under an expected EDR
bound (modeled with an optimal entanglement flow abstrac-
tion), and proved its NP-hardness. With a novel decomposition
theorem, we developed a fully polynomial-time approximation
scheme (FPTAS) for the problem called FENDI. We also
developed a discrete-time quantum network simulator for eval-
uation. Simulation results showed the superior performance
of FENDI, compared to existing entanglement routing and
distribution algorithms.

APPENDIX

A. Proof of Theorem 2
Proof: We find an induced graph G′ ⊆ G in which each

enode mn ∈ G′ has either gmn > 0, or there is exactly
one k ∈ N such that fmkmn = fknmn > 0. Such a subgraph
must exist due to the constraint of I(mn) − Ω(mn) = 0 for
every mn ̸= st, and ηst > 0 for the eflow. We then use
Algorithm 1 to compute ebit generation ratios of the pflow
in G′. Let η∗ be the maximally acceptable EDR of this
pflow where η∗ ≜ min({fmkmn/f̄

mk
mn |m,n, k ∈ N, f̄mkmn >

0} ∪ {gmn/ḡmn |m,n ∈ N, ḡmn > 0}). We update the
original eflow by deducting each variable by η∗ times the
corresponding ebit generation ratio in the pflow. Continue this
process until ηst = 0, and we have a set of pflows with the
sum of EDRs ηst. In the above process, either at least one
gmn, or at least one pair of {fmkmn , f

kn
mn} variables with some

k, becomes 0 after updating each pflow. Since there are in
total O(N3) variables, this decomposition results in at most
O(N3) pflows. □

B. Proof of Theorem 4
Proof: We call a mn/z by enode mn at level z. We first

examine path length feasibility, i.e., ebits generated between
mn at level z has path length of exactly z. For any physical
link mn∈L, the first term in Eq. (8d) ensures that gmn only
contributes to I(mn/z) when z = ζ(mn), i.e., elementary ebits
along mn are only counted at level ζ(mn). Then, for any mn/z
satisfyingfmk/z1mn/z > 0 and f

kn/z2
mn/z > 0, we can see if ebits at

mk/z1 have path length of exactly z1 and ebits at kn/z2 have
path length of exactly z2, then ebits generated at mn/z by
swapping at k exactly have path length of z = z1 + z2 + ζθk .
By induction, any generated ebit at level z has path length of
exactly z. Since there are at most Z levels, all ebits generated
between st have path lengths bounded by Z.

Next we prove optimality of Program (8), by showing that
every solution to Program (8) with objective value ηZst is a
solution to HF-RED with EDR bound ∆st = ηZst and fidelity
bound Υst = 1

4 ·
(
1 + 3 e−Z

)
, and vice versa. A feasible

length-bounded eflow to Program (8) indicates a feasible
eflow to Program (5), by summing up f variables and I(·)
function values over all possible z. Combined with path
length feasibility, the length-bounded eflow maintains worst-
case fidelity above the fidelity threshold Υst and EDR bound
∆st in the HF-RED problem. Now, we represent a feasible
length-bounded eflow by a set of pflows with induced graphs
{G} with {ηG}. Each G = (V, E) would represent a path
pG ∈ G with path length bounded by Z. We can construct
a feasible solution to Program (8) given each G. For each
enode mn ∈ V , let ζmn be the length of the path segment in
G between m and n (which can be computed for each mn in
linear time). For each enode mn that has no in-coming link,
we set gmn= ḡmn · ηG . Then, for each (mk,mn) ∈ E , we set
f
mk/ζmk

mn/ζmn
= f

kn/ζkn

mn/ζmn
= f̄mkmn · ηG . It can be checked that the

constructed solution is feasible to Program (8) based on how
{ḡmn, f̄mkmn , f̄

kn
mn} are computed, how G is defined, and that

each G represents a path with length bounded by Z. Summing
up so-constructed solutions for all of {G} and {ηG}, we get
a feasible solution to Program (8), with the same objective
value ηZst =

∑
G ηG . It follows that Program (8) outputs the

maximum expected EDR among all feasible eflows satisfying
the path length bound of Z. □

C. Proof of Lemma 3
Proof: The left side is trivial due to how lengths are

quantized. The right side is because 1) each entanglement path
in G has at most |N |−1 links and |N |−2 intermediate nodes
whose lengths are counted (excluding source and destination),
and 2) ζθ(p) is an integer value due to quantization (and hence
the floor over θ · ζ(p) on the right side). □

D. Proof of Lemma 4
Proof: If TEST(Z, ε) = true, we have a feasible

length-bounded eflow with maximum EDR ηZst ≥ ∆st and
all paths satisfying Z, which means a feasible solution to
OF-RED is bounded by ∆st. Let p be the maximum-length
path in the solution w.r.t. the original lengths Z . Following
Lemma 3, we have:

ζ(p) ≤ ζθ(p)/θ ≤ Z/θ ≤ (1 + ε)Z.

Since the solution is feasible to OF-RED, its maximum (non-
quantized) path length is an upper bound on Z∗, and hence
we have Z∗ ≤ (1 + ε)Z. This proves the first statement.

To prove the second statement, as long as there is a feasible
OF-RED solution that has maximum path length bounded by
Z, then TEST(Z, ε) must return true. Consider such a solution
for every path p satisfying ζ(p) ≤ Z. By Lemma 3, we have:

ζθ(p) ≤ θ · ζ(p) + (2|N | − 3) ≤ (2|N | − 3)/ε+ (2|N | − 3).

Since ζθ(p) must be an integer, this implies ζθ(p) ≤
⌊(2|N | − 3)/ε⌋ + (2|N | − 3) = ⌊θZ⌋ + (2|N | − 3) = Z.
By Theorem 4, this solution can be decomposed into a set
of pflows with maximum quantized path length ζθ(p) and
satisfying ηZst ≥ ∆st. In this case, TEST(Z, ε) must return
true. Otherwise, it indicates there is no such feasible solution.

□
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E. Proof of Lemma 5

Proof: Algorithm 3 identifies a critical length ζ[i−1]

beyond which no feasible solution exists for Program 3 while
maintaining feasibility for shorter lengths. This means at least
one node/link length no less than ζ[i−1] is needed to satisfy
the EDR bound of ∆st. Consequently, the optimal Z∗ must
be at least ζ[i−1] as a lower bound. For the upper bound, since
there is a feasible solution in G[i−1], and each path can have at
most |N |−1 links and |N |−2 intermediate nodes, the feasible
solution has a maximum path length of (2|N | − 3) · ζ[i−1]

as all nodes and links in G[i−1] have lengths at most ζ[i−1].
Therefore, the gap between the above pair of bounds is a
multiplicative factor of UB/LB = 2|N | − 3 ∈ O(|N |). □

F. Proof of Theorem 5

Lemma 6: ⌊θLB⌋ ≤ Zθ ≤ ⌊θUB⌋+ (2|N | − 3). □
Lemma 7: Zθ ≤ θ · (1 + ε) · Z∗. □

Proof: Note that a feasible solution to OF-RED indicates
a feasible solution to QOF-RED, and vice versa. Given the
optimal solution to original OF-RED with objective Z∗, let
p be its longest entanglement path such that ζ(p) = Z∗,
and let pθ be its longest entanglement path with quantization.
By Lemma 3, ζθ(pθ) ≤ ⌊θζ(pθ)⌋ + (2|N | − 3) ≤ ⌊θζ(p)⌋ +
(2|N | − 3) ≤ ⌊θUB⌋+(2|N | − 3). This proves the right-hand
side of Lemma 6, as Zθ is optimal and hence Zθ ≤ ζθ(pθ).
Further, since ζ(p) = Z∗, we have ζθ(pθ) ≤ θζ(p) + (2|N | −
3) = θ(Z∗ + (2|N | − 3)/θ) = θ(Z∗ + εLB) ≤ θ · (1 + ε) ·Z∗,
and hence Zθ ≤ ζθ(pθ) ≤ θ · (1 + ε) · Z∗.

Now consider the optimal solution to QOF-RED, and let
p′θ and p′ be its longest entanglement path with and without
quantization. Since this solution is also feasible to OF-RED,
we have θLB ≤ θZ∗ ≤ θζ(p′). By Lemma 3, we then have
θζ(p′) ≤ ζθ(p′) ≤ ζθ(p′θ) = Zθ. Hence Zθ ≥ ⌊θLB⌋. □

The lemmas above show this quantized bisection is as effec-
tive as the bisection search on the original bounds [LB,UB].
We then provide the proof of Theorem 5 as follows.

Proof: The approximation ratio directly comes from
Lemma 7. Let T (x) be the time for solving an LP with x
variables. First, Algorithm 3 finds [LB,UB] on Z∗ in up to
|Z| = |N | + |L| iterations, each solving Program (5) with
O(|N |3) variables in O(T (|N |3)) time. For Stage-1 bisection
of Algorithm 4, let π[j] be the ratio UB/LB after the j-th
iteration. Initially π[0] = 2|N | − 3 due to [LB,UB] bound
by Algorithm 3. After each iteration j, π[j] =

√
2π[j−1]

based on how Z is computed. Let J be index of the last
iteration, and apply the above recursively, then we have π[J]=
21/2+1/4+···+1/2J ·π1/2J

[0] ≤ 2 · π1/2J

[0] = 2 · (2|N | − 3)1/2
J

. As

π[J] ≤ 4 when Stage-1 ends, the total number of iterations is
O(log log |N |). Each iteration solves Program (8) with ε = 1,
and hence Z ∈ O(|N |), resulting in O(|N |3Z2) = O(|N |5)
variables. Thus each iteration takes O(T (|N |5)) time. For
Stage-2, the bisection is done on up to ZUB ∈ O( |N |ε ) integers,
with up to O(log |N |

ε ) search iterations. Each iteration solves
Program (8) with O(|N |3Z2

UB) = O( |N |
5

ε2 ) variables, and thus
takes O(T ( |N |

5

ε2 )) time. Summing up the above, the overall
time complexity is O(T (|N |3) · (|N | + |L|) + T (|N |5) ·
log log |N |+T (|N |5/ε2) · log |N |

ε ). Since an LP can be solved
in polynomial time [57], the above time is polynomial to |N |
and 1/ε. □

G. Data Plane Protocol for FENDI
Given a solution output by a central quantum network

controller running Algorithm 4, we design an extension of the
protocol in [18] to achieve the expected EDR and guarantee
that all generated ebits have end-to-end fidelity of at least Υst.

Specifically, after the computation, the factor θ and the
final quantized path length bound ZUB are distributed to each
repeater. For every enode mn, it maintains input buffers
Emn/z to store the ebits generated between mn with a specific
range of fidelity represented by a quantized length z and
output buffers Dmn/zmk/z′ for every k ̸= m,n to store the ebits
that will be contributed to generate ebits between other pairs.
Note that the number and sizes of buffers at each node may
be dynamically adjusted by allocating the available quantum
memories.

Each link mn ∈ E will continuously generate cmn · gmn
elementary ebits. Once successfully generated, these ebits are
added to the buffer Emn/z where z=ζθmn=⌊− log(Wmn)θ⌋+
1. Simultaneously, whenever an ebit is added to Emn/z for any
z, the two ends will jointly toss a random coin and move the
ebit from Emn/z to Dmn/zmk/z′ or Dmn/zkn/z′ with probabilities:

Pr[move to Dmn/zmk/z′ ] =
f
mn/z
mk/z′∑

z′′
∑
k (fmn/zmk/z′′ + f

mn/z
kn/z′′)

;

Pr[move to Dmn/zkn/z′ ] =
f
mn/z
kn/z′∑

z′′
∑
k (fmn/zmk/z′′ + f

mn/z
kn/z′′)

.

Finally, each node k will check if for any mn, it satisfies
1) z1 + z2 + ζθk = z3;
2) f

mk/z1
mn/z3

= f
kn/z2
mn/z3

> 0; and

3) Dmk/z1mn/z3
̸= ∅, and Dkn/z2mn/z3

̸= ∅.
For each such a case, node k locally performs swapping
between each pair of ebits in Dmk/z1mn/z3

and Dkn/z2mn/z3
respectively.

Upon success, the ebit will then be added to Emn/z3 by m
and n. The source and destination will keep all ebits received
in Est/z for any z. All the above processes can be parallel
and asynchronous. The strong network-wide synchronization
requirement in traditional time-slotted entanglement routing
protocols is thus relaxed. By an induction proof similar to the
one in [18] which we omit due to page limit, this protocol is
guaranteed to achieve a long-term EDR of at least ∆st and an
end-to-end fidelity of at least Υst output by the algorithm.

Remark: One implicit assumption not mentioned in [18] is
that the proposed protocol requires perfect quantum memo-
ries to provide the guaranteed fidelity, and sufficiently large
memories to achieve the full expected EDR. These assump-
tions are somewhat unrealistic under the current technologies.
Hence, the computed EDR and fidelity both serve as upper
bounds on the actual values that can be achieved by near-term
devices. Though it is fairly well agreed that large-scale long-
lived quantum memories will be an integral part of quantum
networks in the future, especially with recent breakthroughs
in optical memory devices with more than 1-hour coherence
time [35].

We believe even establishing (tight) bounds on the achiev-
able EDR and fidelity is still very useful for near-term quantum
network design, such as when comparing different topologies
and parameters or practical protocol design with these theo-
retical upper bounds. Furthermore, we have also preliminarily
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tested the performance of the buffered protocol above with
limited buffer space and found that it can still maintain an EDR
close to the theoretical bound with a relatively small buffer
size—such as equal to the capacity of each link. While out of
the scope of the current paper which focuses on computing
the theoretical bounds, we believe smart buffer management
can further reduce the buffer size and increase achievable EDR
and fidelity, which we will explore in our future work.
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